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Abstract  A numerical study has been conducted to investigate the effects of corrugation shapes on 
natural convection heat transfer in a square enclosure. Two types of corrugation (vee and 
sinusoidal) on vertical walls of the enclosure are considered with different corrugation frequencies. 
The vorticity stream function formulation with the Control Volume based Finite Element Method 
(CVFEM) has been used to see the effect of corrugation on heat transfer for different Grashof 
numbers. The local and overall heat fluxes for corrugated surfaces are compared with each other 
and also with that for straight walls (i.e. no corrugation). The results show that the overall heat flux 
increases with the increase of corrugation frequency for low Grashof number but the trend is 
reverse for high Grashof number. For both of Grashof numbers and corrugation frequencies the 
total heat flux is higher for sinusoidal corrugation than that for vee corrugation. At low Grashof 
number the total heat flux through corrugated walls is higher than that through straight wall for all 
corrugation frequencies. At high Grashof number the total heat flux of corrugated surface is higher 
for low corrugation frequency and lower for high corrugation frequency than that of straight walls. 
For all cases the sinusoidal corrugation shows higher heat flux than that of vee corrugation. 
 
Keywords: Sinusoidal corrugation, Vee corrugation, Convection heat transfer, Corrugation 
frequency. 

 
INTRODUCTION 

 
   The buoyant force causes the flow of the fluid, which 
is the consequence of temperature gradient. The flow of 
the fluid transfers internal energy stored in fluid 
elements and it is termed as convection heat transfer. If 
the convection current occurs only by thermal 
expansion of the fluid particle, then it is called natural 
convection and the corresponding heat transfer is 
termed as natural convection heat transfer. But the 
intensity of the mixing of the fluid is generally less in 
natural convection, and consequently the heat transfer 
coefficient in natural convection is lower than that in 
forced convection. Also the shape of the heat transfer 
surface influences  the behavior of the flow. 
 
   Several researchers carried out studies on convective 
heat transfer with corrugated walls; but they have only 
considered convection from a horizontal lower 
corrugated plate to an upper cold flat plate. None of 
them performed an experiment on convection heat 
transfer with vertical hot and cold corrugated plates, and 
this motivates the present study. [Chinnappa, 1970] 
carried out an experimental investigation on natural 
convection heat transfer from a horizontal lower hot 
vee-corrugated plate to an upper cold flat plate. He took 
data for a range of Grashof numbers from 104 to 106. 
The author noticed a change in the flow pattern at Gr = 

8 x 104, which he concluded was a transition point from 
laminar to turbulent flow. [Randall et al., 1979] studied 
local and average heat transfer coefficients for natural 
convection between a vee-corrugated plate (60o vee-
angle) and a parallel flat plate to find the temperature 
distribution in the enclosed air space. From this 
temperature distribution they used the wall temperature 
gradient to estimate the local heat transfer coefficient. 
Local values of heat transfer coefficient were 
investigated over the entire vee-corrugated surface area. 
The author recommended a correlation in which the heat 
flux was 10% higher than that for parallel flat plates. 
 
   [Zhong et al., 1985] carried out a finite difference 
study to determine the effects of variable properties on 
the temperature and velocity fields and the heat transfer 
rate in a differentially heated, two-dimensional square 
enclosure. [Nayak and Cheny, 1975] considered the 
problem of free and forced convection in a fully 
developed laminar steady flow through vertical ducts 
under the conditions of constant heat flux and uniform 
peripheral wall temperature. [Chenoweth and Paolecci, 
1986] obtained steady-state, two-dimensional results 
from transient Navier-stokes equations given for 
laminar convective motion of a gas in an enclosed 
vertical slot with large horizontal temperature 
differences. In the present investigation the effects of 
corrugation shapes of the vertical walls, corrugation 
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frequency and Grashof number on local and overall heat 
transfer rates, and velocity and temperature distribution 
have been examined both qualitatively and 
quantitatively. 
 

PROBLEM DESCRIPTION 
 
   The problem schematic is shown in Fig. 1(a-b). The 
top and bottom walls of the enclosure are insulated and 
the left and right vertical walls are either vee-corrugated 
or sinusoidal corrugated. The left and right walls are 
kept at constant temperature. The temperature of the left 
wall is Th and that of the right wall is Tc, where Th > Tc. 
The characteristic length of the square enclosure is L. 
The origin of the X-Y co-ordinate system is located at 
the left bottom corner of the cavity. 
 

MATHEMATICAL MODELLING 
 
   The Navier-Stokes equations for two-dimensional, 
incompressible flow with constant properties in 
cartesian co-ordinates can be written as follows: 
Continuity equation, 
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y-momentum equation, 
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In the above equations, u and v represent the velocity 
components in the x and y directions respectively, and p 
is the pressure. The source terms Su and Sv consider the 
other body and surface forces in the x and y direction, 
respectively and ν is the kinematic viscosity. By 
introducing appropriate buoyancy term in the 
momentum equations the natural convection heat 
transfer problem can be solved by these equations. 
 
   By differentiating equations (2) and (3) with respect to 
y and x, respectively and then subtracting the results of 
the former from the later, a single vorticity transport 
equation can be obtained: 
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where ω is the vorticity, defined as 
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Upon defining the stream function, ψ as 
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and substituting into Eq (5) the Poisson equation 
relating ω to ψ may be obtained as 
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The details for implementing ω and ψ conditions are 
available in [Husain, 1987]. 
 
   Assuming the properties to be constant, other than the 
density variation in the buoyant forces, the Boussinesq 
approximation [Bejan, 1984], which consists of 
retaining only the variations of density in the buoyancy 
terms, may be used on equation (4) which results in 
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The energy transport equation for two-dimensional 
incompressible flow with constant properties [Patankar, 
1980] can be written as, 
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where α is the thermal diffusivity of the fluid. 
 
   Equations (4) to (8) can be normalized by introducing 
the following non-dimensional quantities. 
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where Gr and Pr are the Grashof and Prandtl numbers 
[Ozisik, 1985] respectively and defined as: 

23 /)( νβ LcThTgGr −=              (11) 

Pr = ν / α             (12) 
Here the parameters g, β and α represent the 
acceleration due to gravity, the coefficient of thermal 
expansion and the thermal diffusivity of the fluid, 
respectively. 
 
The boundary conditions of the problem are as follows: 

(i) 0=
∂

∂

y

ψ
 at all walls 

(ii) 0=
∂

∂

x

ψ
 at all walls 

(iii) Ψ = 0  at all walls 
(iv) θ = 1  at left wall 
 θ = 0  at right wall 
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METHODOLOGY 

 
   The calculation domain is first discretized as in [Ali 
and Husain, 1992]. Following the domain discretization, 
the integral formulation of the relevant transport 
equations [Husain, 1987] is imposed on each control 
volume [Baliga and Patankar, 1980] of the overall 
region. The solution of the governing equations is 
obtained iteratively and once convergence of the 
equations has been achieved the following quantities are 
calculated. 
 
   The local Nusselt number along the hot wall, 
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The dimensionless total heat flux at the hot wall, 
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Where S is the dimensionless distance measured along 
the corrugation of the wall and N is the dimensionless 
distance measured normal to the same. In equation (13) 
q ′′!  is the heat flux per unit length at the hot wall and κ 
is the thermal conductivity. 
 

Table 1:  Summary of computational runs 
 

Corrugation Frequency (CF) 
Vee cor. Sinusoidal cor. 

Grashof number 
(Gr) 
103 
104 

 
1 

 
1 

105 
103 
104 

 
2 

 
2 

105 
103 
104 

 
3 

 
3 

105 
 

RESULTS AND DISCUSSION 
 
   In this investigation the total heat transfer through the 
enclosure, vertical velocity and temperature 
distributions at the horizontal mid-plane, and local 
Nusselt number along the hot wall are examined with 
respect to Grashof numbers 103, 104 and 105 for 
different shapes of corrugated walls and corrugation 
frequencies. The total heat flux of both corrugation 
shapes are compared with that of straight wall. The 
corrugation amplitude is fixed at 5 percent of the 
enclosure height for all runs, where the amplitude “A” is 
defined as half of the horizontal distance measured from 
the left extremity of the left wall to its right extremity as 
shown in Fig.1. Henceforth, the left and right 

extremities of the hot wall will be referred to as the 
“trough” and “peak”, respectively. Here grid size 31x31 
was considered for all runs. The summary of 
computational runs has been shown in Table-1. 
 
Effects of Corrugation Shapes on Heat Flux 
Table-2 shows the effects of corrugation shapes on the 
total heat flux (Q) with different Grashof numbers. For 
easy understanding the results in Table-2 are discussed 
under the following titles: (i) Heat flow through 
corrugated and straight walls, and (ii) Heat flow through 
different corrugated walls. 
 
Table 2: Total heat flux (Q) for corrugated and 

Straight (St.) walls with different Gr. 
 

Q for CF = 1 Q for CF = 2 Q for CF = 3 Gr  
 Vee 

cor. 
Sinus- 
oidal 

Vee 
cor. 

Sinus- 
oidal 

Vee 
cor. 

Sinus- 
oidal 

St. 
wall 

103 1.126 1.186 1.132 1.207 1.135 1.214 1.121 
104 2.295 2.339 2.271 2.321 2.238 2.301 2.270 
105 4.837 4.850 4.753 4.783 4.573 4.624 4.724 

 
(i) Heat flow through corrugated and straight walls –
Table-2 shows that for both corrugations Q increases 
continuously with the increase of Corrugation 
Frequency (CF) for Gr=103 whereas for Gr=104 and 105, 
Q decreases with the increase of CF. For Gr=103 the 
continuous increase of Q with CF may be attributed to 
the enhancement of surface area but the decrease of Q 
for higher Gr may be explained as the retardation of 
flow due to increased waviness of the corrugation. This 
behavior may be explained by asserting that at high Gr 
the fluid velocity increases near the peaks but drops 
near the trough as the boundary layer tends to separate. 
Thus the fluid fails to maintain close contact near the 
trough of the corrugation resulting in decreased 
convection heat transfer, where as for Gr=103, the low 
vertical velocities thus generated enable the fluid to 
maintain better contact with the corrugated wall. Thus 
with the higher CF the corresponding enhancement of 
heat transfer surface area leads to increased total heat 
flux at low Gr. For the case of high Gr, the lower 
velocities and consequent decrease in convective heat 
transfer at the troughs more than offsets the increased 
surface area.  
 
(ii) Heat flow through different corrugated walls – In 
general it can be found from Table-2 that the overall 
heat flux through sinusoidal corrugated walls is higher 
than that through vee corrugated walls for all Grashof 
numbers and CFs. For Gr=103 the increasing rate of Q is 
higher in sinusoidal corrugation with CFs. This can be 
explained by the fact that sinusoidal corrugation 
increases the heat transfer area more than that of vee 
corrugation and the low vertical velocity due to low Gr 
enables the fluid to maintain better contact with larger 
heat transfer area resulting higher total heat flux. For 
Gr=104 and 105, Q decreases with the increase of CF 
caused by the increased waviness of the corrugation. 
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However the increase in Q for sinusoidal corrugation 
can be explained by asserting that the smoothness of the 
curvature at both the peaks and troughs enables the fluid 
to maintain better contact with the sinusoidal 
corrugation. 
 
Effects of CF on Local Nusselt Number 
   The decreasing nature in convection heat transfer 
through corrugated walls is evident upon referring to 
Fig. 2(a-b) where it may be observed that the local 
Nusselt number which is identical to the dimensionless 
local heat flux attains minimum values at the troughs of 
the corrugation. It can be noted from this figure that 
there is a significant increase in local Nusselt number at 
the peaks of the corrugation and decrease of the same at 
the troughs. The reason is that the peaks cause the fluid 
to come in contact more intimately with the surface 
resulting in large convection heat transfer and 
consequently the local Nusselt number increases. Fig. 4 
also shows that the peak value of NuY decreases with 
increasing vertical distance along the corrugated wall. 
This may be explained by the fact that the colder fluid 
collects at the bottom-left corner of the enclosure 
creating a large temperature gradient with the hot wall 
and as it moves up and receives heat, the temperature 
gradient decreases causing the decrease in local Nusselt 
number. 
 
Effects of CF on Vertical Velocity and Temperature 
Distribution  
   Figs. 3 and 4 reveal the effect of corrugation on 
vertical velocity distribution at the horizontal mid-plane 
for Gr=105 and 103 respectively where CF=3. Fig. 3 
indicates that for Gr=105 the peak value of the vertical 
velocity decreases for corrugated surface and becomes 
lowest for vee corrugated surface. This trend can be 
explained by examining Fig. 5 which indicates that the 
temperature gradient is lower for sinusoidal corrugated 
surface causing a lower buoyant force and hence a lower 
vertical velocity. Similarly the temperature gradient is 
lowest for vee corrugated surface and hence causes 
lowest buoyant force and a lowest vertical velocity. 
Because of this lower velocity, the strength of 
convection heat transfer decreases with corrugated 
surfaces which has been shown in table-2. But in Fig. 4 
the vertical velocity increases with corrugated surfaces, 
which leads to an increase in overall heat transfer. 
 
Effects of Gr on Total Heat Flux 
Figs. 6(a-b) show the variation of Q as a function of Gr 
for corrugated and straight surfaces for CF=1 and 3, 
respectively. Fig. 6a shows that for CF=1 the increment 
of Q increases with Gr when compared between the 
corrugated and straight walls which is caused by the 
enhancement of the heat transfer surface area. Reverse 
trend can be found when compared between the 
increment of Q through sinusoidal and vee corrugated 
walls. More clearly, for all Grashof numbers the 
sinusoidal wall has higher Q and the increment of Q for 
sinusoidal case decreases with the increase of Gr. This 

behavior can be explained by asserting that the fluid 
fails to maintain close contact to the troughs resulting in 
lower increment of Q. Fig. 6b shows that the variation 
of Q between vee corrugated and straight walls is 
greater for higher Gr than that between sinusoidal and 
straight walls. The curves of vee corrugated and straight 
walls cross at around Gr=103 indicating a trend reversal 
which was discussed earlier. On the other hand, the 
variation of Q between sinusoidal corrugated and 
straight walls is greater for lower Gr than that between 
vee corrugated and straight walls. Nearly constant 
variation of Q can be found between vee and sinusoidal 
corrugated walls for lower Gr. This behavior can be 
explained by asserting two competing effects: the 
enhancement of wall surface area and the early 
separation of flow for sinusoidal corrugation. 
Specifically the increase in wall surface area tends to 
enhance the overall heat transfer while the separation of 
flow tends to reduce the convection transport of energy.  
 

CONCLUSION 
 
   The above analysis shows that the overall heat transfer 
rate for low Grashof number increases for corrugated 
surfaces but the trend is reversed for high Grashof 
number. For low Grashof number the sinusoidal 
corrugation shows higher increment of Q than that of 
vee corrugation when compared with straight wall. 
Moreover, for both of Grashof numbers and corrugation 
frequencies the sinusoidal corrugation shows higher 
heat flux than the vee corrugation. The local Nusselt 
number increases significantly at the peaks and attains 
minimum values at the troughs and the peak values of 
Nuy decrease with the increase of vertical distance along 
the corrugated wall. It is also observed that for high 
Grashof number the temperature gradient becomes 
lower with corrugated surface causing the lower vertical 
velocity of the fluid but the trends is reversed for low 
Grashof number. It can be pointed out that the decreased 
nature of heat transfer rate for corrugated surface may 
be applied in practical situation where heat transfer 
reduction is desired across large temperature 
differences. 
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Fig.1a  Schematic of the vee corrugated domain. 

Fig.1b Schematic of the sinusoidal corrugated domain

Fig.2a Local Nusselt number distribution on the hot 
wall (Vee corrugated). 
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Fig.2b Local Nusselt number distribution on the 
hot wall (Sinusoidal corrugated). 
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ig.4 Vertical velocity distribution at the horizontal 
midplane for Gr=103 and CF=3. 
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Fig.6b Variation of Q with Gr for CF=3.
Fig.5 Temperature distribution at the horizontal 
midplane for Gr=105 and CF=3. 
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